Czech Technical University in Prague Fakulty of Nuclear Science and Physical Engineering

PROBLEM AREAS

to Entrance Exams in **DOCTORAL STUDIES**

Field of Study: Specialization:

Physical Engineering Solid State Engineering

Study program:

Applications of Natural Sciences

Sul	bject	Solid State Theory
Problem Areas		
1.	Binding forces in crystals, phonons), specific heat of th	crystal lattice vibrations (acoustic and optical branches, e crystal lattice.
2.	Schrödinger equation for solids (adiabatic approximation, single-electron approximation). Solution of Schrödinger equation in Hartree-Fok approximation, Bloch theory of electron movement in periodic crystal field.	
3.	Fundamental methods of calculating electron band structure, Fermi surface, effective mass tensor; Wannier theory of electron movement in perturbated periodic potential.	
4.	Localized electronic states equilibrium.	in crystals; properties of conduction electrons in statistical
5.		on, electron scattering on lattice vibrations and ionized of conduction electrons in metals and semiconductors, basic
6.	Dispersion and absorption of electromagnetic waves in solids, inter- and intra-band optical transitions in solids, Frenkel and Mott-Wannier exciton model.	
7.	Polarons in ionic crystals, l resonance.	Pauli paramagnetism and Landau's diamagnetism, cyclotron
8.	Weiss phenomenological th antiferromagnetics and ferro	and 2nd order, paramagnetism of atomic and ionic assemblies, neory of ferromagnetism, Neel theory of molecular field of omagnetics, crystalline structures of antiferromagnetics and quantum theory of ferromagnetism, spin-waves theory of
9.		of magnetization and thermal capacity of ferromagnetics, rangements and their study by neutron diffraction.
10.	Basic methods of mathema modeling.	tical modeling of condensed matter: DFT, MD, mesoscale

	et Solid State Physics	
coble	em Areas	
1.	Types of bonding forces in condensed matter - ionic, covalent, metallic, Van de Waals, hydrogen.	
2.	Structure and defects of condensed matter - macroscopic symmetry of crystals, crystal lattice, liquid crystals, nanocrystals, amorphous substances, structural defects, diffusion.	
	Mechanical properties of solids - elastic and plastic deformation, dislocation dynamics, ductility and strength of solids	
4.	Thermal properties of solids - thermal capacity, thermal expansion and thermal conductivity of the crystalline lattice.	
5.	Electronic structure of solids - basic properties of wave functions and electroni spectrum in periodic potential of crystals.	
	Physics of metals – metallic lattice, ordered and disordered systems, point defects in metals, diffusion, dislocations in simple lattices and their movement, short- and long range interactions of dislocations.	
	Model of free electrons, electrical, magnetic, optical and thermal properties of metals superconductivity. Plasma reflection edge, phenomenological theory of electro-optica and piezo-optical properties of crystals, electro-, magneto- and acousto-optical phenomena.	
	Physics of dielectrics - orientational, ionic and electronic polarization, optical properties, feroelectrics, phase transitions, Kramers - Kronig relations, propagation of EM waves in medium, Fresnel equations, nonlinear optics, luminescence.	
	Physics of semiconductors - intrinsic and extrinsic semiconductors, electrical conductivity, Hall effect, contact phenomena, PN junction, photoelectric properties surface properties, transistors.	
	Experimental methods of solid state studies - X-ray, electron and neutron diffraction analysis, Raman spectroscopy, special methods for the study of structure and chemical composition of solid surfaces, basics of preparation and properties of thin layers and multilayer assemblies.	